Preparing for Poster Presentations

Dr. Thoron
The purpose of the poster is the following:

- Should provide enough information to a person that if the poster was there by itself the reader could know:
 - Why this study was investigated (Introduction & need for the study)
 - How it was conducted
 - Results
 - Conclusions
- But that it would be helpful to have a person there to walk them through the poster – not 100% stand alone, but that the reader could grasp it on their own
- I also rarely use periods and complete sentences in the creation of a poster – again, the poster should be a presentation tool.
Things to consider: APA

There are NO APA Guidelines for posters

- There is no right way nor a wrong way to do a poster
- Some look better than others – it’s a visual appeal
- Organization and flow is key – the poster needs to be a useful tool for the presenter

In the below examples (I made them smaller to fit on the slides and so the file size is smaller – so don’t use that as a guide on font size – more on that later) notice how citations are used. Typically the author and year follow APA and I typically choose to make it a smaller font size.

I typically DO list references on the poster, but in a smaller text.
Setting up a PowerPoint Slide for a Poster

Size – If using PowerPoint – do the following:
- Select Design Tab
- Select “Slide Size”
- Select “Customize Slide Size”
- Enter width and height
- Double check the slide is set to “landscape”
Things to consider: Font

Font –

Best to use **Arial** or **Times New Roman**

- If Choosing a different font –
- Be certain it is easy to read
- Don’t choose a font just b/c it’s different – too different makes it difficult to read
Things to consider: Font size

Font Size –

- The goal is to allow the reader the ability to read from 2-3 feet away
- I typically try and follow this:
 - Title (at the top): 80-86 font size
 - Headings (for sections): 36
 - Words in the sections: 28 – 32
- The key is to not have lots of empty places, so font size can change depending on how many words etc.
Things to consider: Text & Pictures

- Text – the number one pitfall – too much text!
 - Remember – a poster is not a stand alone item!
 - The poster and the presenter should be able to interact
 - It’s much easier to include CLEAR data tables or charts for the presenter to use as a tool
 - Remember too much text – the judges don’t read or hardly have time to read the poster – it must be useful and can be pointed out as the student presents.
 - This is the BIGGEST mistake I see – TOO MUCH TEXT (like this slide!)

- Pictures – be certain they are high quality and high resolution images
 - Remember to “blow up” the PowerPoint slide to 100% to look at the poster before printing to be certain:
 - Pictures and graphics are of good enough quality
 - That there is not too much empty space
 - That headings and pictures are not too close to each other
Things to consider – in general

Logos
- I see some use school logos or university logos
- If they received help or collaborated – that’s fine
- Make sure images (logos) are high quality
- No one gives extra points for seeing UF as a partner, but some add this etc b/c they had collaboration – this is fine
The Impact of Vee Map and Standard Laboratory Report on Content Knowledge Achievement

Andrew C. Thoron – University of Florida
Michael A. Swindle – Clewiston High School
Brian E. Myers – University of Florida

Introduction
➢ Understand scientific laboratory work
➢ Construct knowledge during laboratory experiences (Roehrig, Luft, & Edwards, 2001)
➢ Facilitates scientific reasoning (NAS, 1996)
➢ Scientific inquiry as the mode of instruction
➢ Problems with laboratories in high school are due to the overwhelming complexity of procedural assessments which lead to little learning (NRC, 2006)

Objectives
1. Compare traditional laboratory reports to Vee Map reports as formative assessment
2. Determine the impact on student content knowledge achievement

Methodology
➢ Quasi-experimental design
➢ 3 sections of introductory agriscience selected randomly for treatment (n = 18) and control (n = 44)
➢ Pretest to establish a baseline and serve as a covariate measure

Findings
➢ Using the covariate of content knowledge pretest score, the effect of treatment was found to not be statistically significant.

References
Perceptions of The National Agriscience Teacher Ambassador Academy Toward Integrating Science into School-Based Agricultural Education Curriculum

Brian E. Myers - University of Florida
Andrew C. Thoron - University of Florida
Gregory E. Thompson - Oregon State University

Introduction
- Integration depends largely on the local teacher
- Students take control of their learning, make decisions, and solve problems (Dunbar, 2002)
- Studies report agricultural teachers willingness to integrate science (Thompson & Schumacher, 1998)
- Integrating science with the inquiry based teaching techniques is an important way to gauge integration

Objectives
1. Perceptions toward the integration of science.
2. Perceptions regarding barriers to integrating science.
3. Perceptions concerning the impact of science integration on student enrollment.
4. Perceptions of support from various groups toward integration.
5. Perceived competence / preparation level to integrate science into curriculum.
6. Describe the use of inquiry based teaching techniques.

Methodology
- Census study (N = 25)
- Descriptive survey research design
- Attitudinal instrument (Thompson & Schumacher, 1998) Cronbach Alpha .88 / Post-hoc .80
- Inquiry based teaching techniques instrument (Dunbar, 2002) Cronbach Alpha .90 / Post-hoc .81

Findings
- Concepts easily understood when science is integrated
- Takes more time to integrate
- Students are better able to understand agriculture when science is integrated
- Integrating science increases the ability to teach solving problems.
- Over half (56%) lack materials
- 56% noted lack of experience in science integration
- Most agreed support from administration
- Plan to increase the amount of science integration
- Greatest enrollment impact in high achieving students
- Overall enrollment increase
- Suggested that students complete early field experiences with teachers who integrate science.
- Teachers engaging in inquiry-type teaching strategies slightly more than two times a week.
- Students were asked to engage in inquiry-type activities slightly more than once per month.

Recommendations
- Use NAATA as a model to enhance integration in the curriculum.
- Focus on the impact of integrating science has on the number and ability level of students.
- Teacher preparation programs should review the amount of science offerings at the undergraduate level.
- Further studies utilizing Dunbar’s inquiry based teaching techniques scales will help determine the degree of inquiry based learning in agricultural education.

References
Students’ Perceptions of Agriscience when Taught Through Inquiry-based Instruction

Andrew C. Thoron, University of Florida
Sarah E. Burleson, University of Florida

Introduction/Need for Research

• Students’ motivation
• To achieve in science is directly related to their attitudes toward science
• Attitudes are shaped over time
• Attitudes can be influenced by
 • Teacher
 • Instructional approach
• Unfavorable attitudes can create a lack of motivation

Inquiry-based instruction (IBI) aids
• Deeper conceptual understanding
• Scientific reasoning skill
• Students’ attitudes and perceptions toward learning science

Theoretical Framework

• Rooted in the constructivist theory:
 • Learner must construct knowledge
 • Teacher dictates less knowledge to the learner, but the teacher provides the context and facilitates learning

Methodology

• Descriptive survey research design
• Researcher developed instrument
 Cronbach’s Alpha .83
• Population: seven National Agriscience Teacher Ambassador Academy (NATAA) participants’ students (n=170)
• 12 week study
• Survey instrument administered at the end

Results/Findings

• “Agriculture is of great importance to our country’s development.”
• “Disagreed that an individual could get along without agriculture in their everyday life.”
• Students were interested in a career in agriculture
• Would like to take more courses that use IBI
• Would rather learn through IBI over other instructional methods

Conclusions/Implications/Recommendations

• IBI students responded positively toward agriscience regarding the importance of agriculture in their everyday lives.
• Supports the notion that IBI can build students’ agriculture perceptions
• IBI should be used to address the need to develop more science driven students in agriculture

References

Note. SD = strongly disagree, D = disagree, U = uncertain, A = agree, SA = strongly agree
eLearning as a Tool for Faculty Development
Prior to Delivering Learner-Centered Workshops in International Settings

Andrew C. Thoron - University of Florida; T. Grady Roberts - Texas A&M University; R. Kirby Barrick - University of Florida; Mohamed M. Samy - MUCIA - AERI Linkage Project.

Problem Statement:
So you’re going to travel out of the country. Now what?

◊ Need for globalization of curriculum
◊ Faculty lack experience in international engagement

Purpose:
Development of a tool which promotes globalization and prepares faculty for international engagement.

How it works:
◊ Faculty will work through a series of scenarios and be asked to think critically.

◊ The module will bring the learner through the thought process of developing a workshop within a given context.
 ◦ Background information-country, overall project and participants.
 ◦ Planning - narrowing the focus, goals and objectives.
 ◦ Flexibility - remaining flexible for many factors.
 ◦ Language - true meaning of an idea.
 ◦ Translation - translators familiar with the content.
 ◦ Interpersonal connections - making connections with participants.
 ◦ The learners - social learners, inquisitiveness, innovative, conservative.

Implications:
Faculty should be better prepared for curricular decisions and more comfortable in international development and study abroad programs.

Resources Needed:
◊ College web-design professionals
◊ Creators with previous foreign travel and workshop participation
◊ Appropriate learning theories

Future Plans:
◊ Development of the international preparation module, with input from stakeholder groups to aid in development of a web-based version.

◊ Use the module as a tool to serve
 • Undergraduate student interns seeking international experience.
 • University extension training as they focus on learners at the local and international level.

References: